Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Biol Macromol ; 222(Pt A): 1538-1550, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2041798

ABSTRACT

The recently developed pathogenic virus, SARS-CoV-2, was found in the Hubei Province, China. Giving rise to a broad spectrum of symptoms, SARS-CoV-2 rapidly spread across the globe, causing multi-systemic and dangerous complications, with death in extreme cases. Thereby, the number of research cases increases every day on preventing infection and treating its resulting damage. Accumulating evidence suggests noncoding RNAs (ncRNAs) are necessary for modifying virus infection and antiviral immune reaction, along with biological processes regulating SARS-CoV-2 and subsequent disease states. Therefore, understanding these mechanisms might provide a further understanding of the pathogenesis and feasible therapy alternatives against SARS-CoV2. Consequently, the molecular biology of SARS-CoV-2, ncRNA's role in its infection, and various RNA therapy tactics against the virus have been presented in this review section.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , Antiviral Agents/therapeutic use , RNA, Untranslated/genetics
2.
Biomed Pharmacother ; 148: 112743, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1803592

ABSTRACT

Viral infections are a common cause of morbidity worldwide. The emergence of Coronavirus Disease 2019 (COVID-19) has led to more attention to viral infections and finding novel therapeutics. The CRISPR-Cas9 system has been recently proposed as a potential therapeutic tool for the treatment of viral diseases. Here, we review the research progress in the use of CRISPR-Cas technology for treating viral infections, as well as the strategies for improving the delivery of this gene-editing tool in vivo. Key challenges that hinder the widespread clinical application of CRISPR-Cas9 technology are also discussed, and several possible directions for future research are proposed.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Genetic Therapy/methods , Virus Diseases/therapy , COVID-19/therapy , Genome, Viral , HIV Infections/therapy , Hepatitis B/therapy , Herpesviridae Infections/therapy , Humans , Papillomavirus Infections/therapy , SARS-CoV-2
3.
Int Immunopharmacol ; 97: 107679, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1185016

ABSTRACT

The calamity of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), COVID-19, is still a global human tragedy. To date, no specific antiviral drug or therapy has been able to break the widespread of SARS-CoV2. It has been generally believed that stimulating protective immunity via universal vaccination is the individual strategy to manage this pandemic. Achieving an effective COVID-19 vaccine requires attention to the immunological and non-immunological standpoints mentioned in this article. Here, we try to introduce the considerable immunological aspects, potential antigen targets, appropriate adjuvants as well as key points in the various stages of COVID-19 vaccine development. Also, the principal features of the preclinical and clinical studies of pioneering COVID-19 vaccine candidates were pointed out by reviewing the available information. Finally, we discuss the key challenges in the successful design of the COVID-19 vaccine and address the most fundamental strengths and weaknesses of common vaccine platforms.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Animals , Drug Design , Humans , SARS-CoV-2/genetics , Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL